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Outline

� Cross-Validation

� Dimensionality reduction

� Filter univariate methods

� Multi-variate filter & wrapper methods

� Search strategies

� Embedded approach
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Cross-Validation (CV): Evaluation
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Cross-Validation (CV): Evaluation
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� For each model, we first find the average error by CV.

� The model with the best average performance is selected.
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Cross-Validation (CV): Model Selection
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� 5-fold CV

� 100 runs

� average
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Cross-validation: polynomial regression 

example

Cross-Validation & Feature Selection 



7

�

77

Sharif University

of Technology7

Leave-One-Out Cross Validation (LOOCV)
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� Feature selection

� Select a subset of a given feature set

� Feature extraction (e.g., PCA, LDA)

� A linear or non-linear transform on the original feature space

Feature 

Extraction
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Dimensionality reduction:

Feature selection vs. feature extraction
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Feature selection
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Feature Selection

The selected 

features
Supervised feature selection: Given a labeled set of data points, 

select a subset of features for data representation
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Why feature selection?
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� Eliminating irrelevant features can decrease the classification

error on test data

SVM Decision 

Boundary

Noise 

feature

SVM Decision 

Boundary
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Noise (or irrelevant) features
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[Weston et al, Bioinformatics, 2002]

Number of features
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Drug Screening
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[Bekkerman et al, JMLR, 2003]

Top 3 words of some categories:

� Alt.atheism: atheism, atheists, morality

� Comp.graphics: image, jpeg, graphics

� Sci.space: space, nasa, orbit

� Soc.religion.christian: god, church, sin

� Talk.politics.mideast: israel, armenian, turkish

Reuters: 21578 news wire, 114 semantic 

categories.

20 newsgroups: 19997 articles, 20 

categories.

WebKB: 8282 web pages, 7 categories.

Bag-of-words: >100000 features.
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Text Filtering
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Relief:

Simba:

100 500 1000

[Navot, Bachrach, and Tishby, ICML, 2004]
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Face Male/Female Classification
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Some definitions
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� Univariate method (variable ranking): considers one

variable (feature) at a time.

� Multivariate method: considers subsets of features

together.
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Another categorization
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Filter: univariate
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Pearson Correlation Criteria

Cross-Validation & Feature Selection 



19

σ-
σ+ x1

Y=1 

Y=-1

μ-μ+

densityY=1 

Y=-1

x2

density

μ-μ+

σ+
σ-

x1

x2

19191919
Sharif University

of Technology19

Single Variable Classifier 
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Univariate Mutual Information
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Mutual Information
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Mutual Information
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� Univariate methods may fail:

� a feature may be important in combination with other features.

� Redundant features:

� They can select a group of dependent variables that carry similar

information about the output, i.e. it is sufficient to use only one (or a

few) of these variables.
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Filter – univariate: Disadvantage
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� Samples on which univariate feature analysis and scoring

fails:

[Guyon-Elisseeff, JMLR 2004; Springer 2006]
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Univariate methods: Failure
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What is the relation between redundancy and correlation:

Are highly correlated features necessarily redundant?

What about completely correlated ones?
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Redundant features
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Multi-variate feature selection
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0,0,0,0

1,0,0,0 0,1,0,0 0,0,1,0 0,0,0,1

1,1,0,0 1,0,1,0 0,1,1,0 1,0,0,1 0,1,0,1 0,0,1,1

1,1,1,0 1,1,0,1 1,0,1,1 0,1,1,1

1,1,1,1

[Kohavi-John,1997]
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Subset Generation: select a candidate feature subset for evaluation

Subset Evaluation: compute the score (relevancy value) of the subset

Stopping criterion: when stopping the search in the space of feature subsets

Validation:  verify that the selected subset is valid
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Subset 

generation

Subset 
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Stopping 
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procedure
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� Predefined number of features is selected

� Predefined number of iterations is reached

� Addition (or deletion) of any feature does not result in a

better subset

� An optimal subset (according to the evaluation criterion) is

obtained.
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Stopping criteria
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Filter and wrapper methods
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rank subsets of useful features

Filter
Feature 

subset
Classifier

Original feature set

Wrapper

Multiple 

feature 

subsets

Classifier

take classifier into account to rank feature subsets (e.g., 

using cross validation to evaluate features)
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Original feature set
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Filters vs. wrappers
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� For each feature subset, train classifier on training data

and assess its performance using evaluation techniques

like cross-validation
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Wrapper methods: Performance assessment
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� Distance (Euclidean distance)

� Class separability: Features supporting instances of the same class to be closer in terms of

distance than those from different classes

� Dependency (correlation coefficient, mutual information, …)

� good feature subsets contain features highly dependent with the class, yet they aren’t

highly dependent with each other

� minimum Redundancy Maximum Relevance (mRMR)

� Consistency (min-features bias)

� Selects features that guarantee no inconsistency in data

� inconsistent instances have the same feature vector but different class labels

� Prefers smaller subset with consistency (min-feature)
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inconsistent
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Filter methods: Evaluation criteria
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� NP-hard problem.

� Complete search is possible only for small number of features.

� Greedy search is often used (forward selection or backward
elimination).
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How to search the space of feature subsets?
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� Search direction
� Forward

� Backward

� Random

� Search strategies
� Exhaustive - Complete

� Branch & Bound

� Best first search

� Heuristic or greedy
� Sequential forward selection

� Sequential backward elimination

� Plus-l Minus-r Selection

� Bidirectional Search

� Sequential floating Selection

� Non-deterministic
� Simulated annealing

� Genetic algorithm
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� Filters

� Fast execution: evaluation function computation is faster than a classifier training

� Generality: Evaluate intrinsic properties of the data, rather than their interactions with a particular

classifier (“good” for a larger family of classifiers)

� Tendency to select large subsets: Their objective functions are generally monotonic (so tending to

select the full feature set and a cutoff is required).

� Wrappers

� Slow execution: must train a classifier for each feature subset (or several trainings if cross-validation is

used)

� Lack of generality: the solution lacks generality since it is tied to the bias of the classifier used in the

evaluation function.

� Ability to generalize: Since they typically use cross-validation measures to evaluate classification

accuracy, they have a mechanism to avoid overfitting.

� Accuracy: Generally achieve better accuracy than filters since they find a proper feature set for the

intended classifier.
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Filters vs. Wrappers
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� Decision trees have a built-in mechanism to perform variable

selection

� Nested subset methods

� (input) node pruning techniques in neural networks are feature selection

algorithms.

� Direct objective optimization

� Combines goodness-of-fit and the number of variables in the

objective function
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Examples of embedded methods
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Direct objective optimization: example 
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[wikipedia]

Minkowski distance: 
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Lp-Norms
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� L1 regularization: the number of zero weights increases and thus shows

feature selection property

[Bishop]
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Example

Cross-Validation & Feature Selection 



42

� I. Guyon and A. Elisseeff, An Introduction to Variable and Feature

Selection, JMLR, vol. 3, pp. 1157-1182, 2003.

� S. Theodoridis and K. Koutroumbas, Pattern Recognition, 4th edition, 2008.

[Chapter 5]

� H. Liu and L. Yu, Feature Selection for Data Mining, 2002.

� Course CE-717, Dr. M.Soleymani

4242424242
Sharif University

of Technology42

References

Cross-Validation & Feature Selection 



4343434343
Sharif University

of TechnologyRegression: Probabilistic perspective 43

Feed back

� https://forms.gle/vKRbyVVsWRKcZuqr8

https://forms.gle/vKRbyVVsWRKcZuqr8

